

ROADWORKS NOTES

- ALL DIMENSIONS ON THE DRAWINGS ARE IN METRES UNLESS SHOWN OTHERWISE.
- ALL TURNOUT RADII ARE TO THE LIP OF THE CHANNEL.
- LENGTH AND LOCATION OF MITRE DRAINS SHALL BE DETERMINED ON SITE BY THE SUPERINTENDENT.
- ALL WORKS SHALL BE CARRIED OUT IN ACCORDANCE WITH CURRENT MORETON BAY REGIONAL COUNCIL STANDARDS AND STANDARD DRAWINGS UNLESS DIRECTED OTHERWISE. (IPWEAQ STDS)
- THE CONTRACTOR SHALL VERIFY LOCATIONS OF ALL EXISTING SERVICES WITH ALL RELEVANT AUTHORITIES BEFORE COMMENCING CONSTRUCTION. ANY COSTS ASSOCIATED WITH REPAIRING DAMAGE TO EXISTING SERVICES SHALL BE PAID FOR BY THE CONTRACTOR
- THE CONTRACTOR SHALL ERECT TRAFFIC CONTROL DEVICES IN ACCORDANCE WITH THE RELEVANT AUTHORITY SPECIFICATIONS.
- SUB-BASE GRAVEL COMPACTED TO 95% AS1289 (MODIFIED) AND OF MINIMUM THICKNESS 75mm SHALL EXTEND UNDER THE KERB AND CHANNEL TO 150mm (MIN.) BEHIND THE KERB.
- NBN TO RECEIVE 3 WEEKS NOTICE BEFORE INSTALLATION OF CONDUITS.
- THE CONTRACTOR SHALL VERIFY OFFSET PEG LOCATIONS AND BENCH MARK LEVELS AND ADVISE THE
- SUPERINTENDENT OF ANY DISCREPANCY BEFORE THE COMMENCEMENT OF CONSTRUCTION KERB AND CHANNEL TO BE CONSTRUCTED IN ACCORDANCE WITH MBRC STD. DWG. RS-080
- SIDE DRAINS SHALL BE CONSTRUCTED IN ACCORDANCE WITH MBRC STD DRAWINGS RS-140 AND 142.
 - a. TRIMMING AND COMPACTION OF SUBGRADE IS TO BE COMPLETED AND APPROVED BEFORE SUBSOIL DRAINS AND SERVICE CONDUITS ARE CONSTRUCTED. THE TRENCHES SHALL THEN BE EXCAVATED, AND THE EXCAVATED MATERIAL PLACED ON THE FOOTPATH AND NOT THE SUBGRADE.
 - b. WHERE SUBSOIL DRAINS PASS UNDER SERVICE CONDUITS, THE SIDE DRAINS ARE TO BE DEEPENED AND GRADED OUT TO A NORMAL DEPTH AT A MINIMUM GRADE OF 1:250
 - c. IN DISPERSIVE, SOLUBLE OR FINE GRAINED SOILS, THE DEVELOPER'S REPRESENTATIVE IS TO EVALUATE WHETHER GEOFABRIC WRAPPED SUBSOIL DRAINS ARE REQUIRED. WHERE GEOFABRIC WRAPPED SUBSOIL DRAINS ARE PROPOSED THE DEVELOPER'S REPRESENTATIVE IS TO PROVIDE DETAILS FOR APPROVAL BY COUNCIL'S NOMINATED REPRESENTATIVE.
 - d. ROAD SUBSOIL DRAINAGE MUST BE 'DAYLIGHTED' AND DISCHARGED TO AN APPROVED LEGAL POINT OF DISCHARGE. CAPS ARE TO BE PROVIDED TO UPSTREAM ENDS OF SUBSOIL DRAINS.
- EACH PAVEMENT COURSE SHOULD NOT BE COMMENCED UNTIL THE PREVIOUS COURSE HAS BEEN INSPECTED AND APPROVED AND CERTIFIED BY THE CONSULTANT WITH RESPECT TO COMPACTION, FINISHED LEVELS AND TEXTURE OF FINISH, COMPACTION TESTS OF EACH LAYER ARE REQUIRED BEFORE PROCEEDING TO THE NEXT LAYER, ALL TEST RESULTS ARE TO BE PROVIDED TO COUNCIL'S NOMINATED REPRESENTATIVE PRIOR TO SURFACING
- SUBGRADE IS TO BE TRIMMED TO AN EVEN SURFACE FREE FROM LOOSE MATERIAL AND GRADED TO BE FREE-DRAINING. UNSUITABLE MATERIAL SUCH AS ORGANIC MATTER IS TO BE REMOVED. SUBGRADE AFFECTED BY RAINFALL AFTER FINAL TRIMMING SHALL NOT BE ACCEPTED UNTIL APPROPRIATE DRYING OUT TREATMENT HAS BEEN AFFECTED
- UNBOUND PAVEMENT COURSE MATERIAL IS TO BE PLACED ONLY ON UNDERLYING LAYERS MAINTAINED AT THE CORRECT MOISTURE CONTENT. PREPARED SUBGRADES AND PRECEDING LAYERS OF BASE COURSE SHALL BE MOISTENED IMMEDIATELY PRIOR TO SPREADING THE NEXT COURSE. PAVEMENT MATERIAL IS TO BE MAINTAINED AT THE SPECIFIED MOISTURE CONTENT PRIOR TO AND DURING SPREADING. THE LEADING EDGES OF THE PAVEMENT MATERIAL ARE TO BE KEPT MOIST. MINIMUM COMPACTED LAYER THICKNESS SHALL BE 100 MILLIMETRES AND MAXIMUM COMPACTED THICKNESS SHALL BE 150mm
- PRAM RAMPS TO BE CONSTRUCTED IN ACCORDANCE WITH MBRC STD DWG PC-2101A

CONCRETE PATHWAYS

CONCRETE PATHWAYS TO BE CONSTRUCTED IN ACCORDANCE WITH IPWEA STD DWG RS-065

PAVEMENT DEPTH VERIFICATION

PAVEMENT DEPTHS SHALL BE VERIFIED BY THE PROVISION OF AS CONSTRUCTED LEVELS OF THE SUBGRADE AND PRE-SEAL STAGE (OR TOP OF KERB IF INSTALLED) AT A FREQUENCY OF THREE (3) LEVELS (RIGHT HAND SIDE, CENTRE AND LEFT HAND SIDE) EVERY 50 METRES. THE SURVEYED INFORMATION IS TO BE PROVIDED IN A TABULATED FORMAT AND IS TO BE CERTIFIED BY BOTH THE SURVEYOR AND CONSULTING ENGINEER PROVIDED WITH ON MAINTENANCE SUBMISSION.

SUBGRADE TESTING

A DESIGN CALIFORNIA BEARING RATION (CBR) IS TO BE DETERMINED FOR EACH IDENTIFIABLE UNIT DEFINED ON THE BASIS OF TOPOGRAPHY, GEOLOGICAL AND DRAINAGE CONDITION OF THE SITE. THE FOUR DAY SOAKED CBR AT A COMPACTION OF 100% STANDARD COMPACTION IS TO BE THE STANDARD TEST. TESTS ARE TO BE CARRIED OUT IN A NATA REGISTERED LABORATORY (NATIONAL ASSOCIATION OF TESTING AUTHORITIES). THE SAMPLING IS TO BE RANDOMLY LOCATED WITHIN EACH LENGTH OF THE PROPOSED ROADWAY WITH CONSTANT SUBGRADE MATERIAL. IT IS REQUIRED THAT A MINIMUM OF 1 TEST PER MATERIAL TYPE BE CARRIED OUT. THE LOCATION OF MATERIAL TYPE VARIANCES ARE TO BE DETAILED IN ACCORDANCE WITH SAMPLE TEST AND ADJOINING LOT. THE SAMPLES SHALL BE TAKEN GENERALLY IN THE POSITION OF THE OUTER WHEEL PATH ON BOTH SIDES OF THE PROPOSED ROAD. A SKETCH PLAN SHOWING THE LOCATION OF ALL TESTS IS TO BE SUBMITTED WITH THE TEST RESULTS.

THE CONTRACTOR MAY BE REQUIRED, FROM TIME TO TIME, DURING THE PERIOD OF CONSTRUCTION. TO CLEAN THOSE PARTS OF THE ACCESS ROUTE TO THE SITE THAT MAY BE AFFECTED BY ANY MATERIAL DROPPED DEPOSITED OR SPILLED ON THE ROADS AS A RESULT OF CONSTRUCTION PROCESSES ASSOCIATED WITH THE SITE ALL CONSTRUCTION TRAFFIC TO THE SUBJECT PROPERTY SHALL BE ACCESSED VIA CASH STREET.

DRIVEWAY NOTES:

ALL CONCRETE DRIVEWAYS ARE TO BE 3.0m. WIDE U.N.O., 125mm. THICK WITH F72 MESH LOCATED CENTRALLY, ON A 75mm. THICK CBR15 GRAVEL BASE.

THE CONTRACTOR IS TO ENSURE THAT ALL SERVICE CONDUITS ARE IN PLACE BEFORE POURING THE DRIVEWAYS.

THE BACK OF KERB AND CHANNEL IS TO BE CUT DOWN AT ALL DRIVEWAY ENTRANCES.

THE EXACT LOCATION AND EXTENT OF THE DRIVEWAY WILL BE DETERMINED ON SITE BY THE SUPERVISING ENGINEER.

COMPACTION TESTING AND FREQUENCY

DETERMINATION OF THE COMPACTION PERFORMANCE OF THE SUBGRADE AND PAVEMENT GRAVEL MATERIALS - LABORATORY REFERENCE DENSITY FIELD DENSITY OPTIMUM MOISTURE CONTENT FIELD MOISTURE CONTENT -SHALL BE CARRIED OUT IN ACCORDANCE WITH AS1289 METHODS OF TESTING SOILS FOR ENGINEERING PURPOSES, IN PARTICULAR THE E SERIES TESTS. THE LABORATORY REFERENCE DENSITY SHALL BE:

- NATURAL SUBGRADE 100% STANDARD MAXIMUM DRY DENSITY (MDD)
- PAVEMENT UPPER AND LOWER SUB BASE LAYERS 100% STANDARD MAXIMUM DRY DENSITY (MDD)
- PAVEMENT BASE LAYER 100% STANDARD MAXIMUM DRY DENSITY (MDD)

THE MINIMUM FREQUENCY OF TESTING SHALL BE IN ACCORDANCE WITH COUNCIL'S PLANNING SCHEME POLICY OPERATIONAL WORKS INSPECTIONS, MAINTENANCE AND BONDING PROCEDURES. PLANNING SCHEME POLICY -INTEGRATED DESIGN - PAGE 45 OF 60.

A MINIMUM OF THREE (3) TESTS PER PROJECT WILL BE REQUIRED. A SKETCH PLAN SHOWING THE LOCATION OF THE TESTS IS TO BE SUBMITTED WITH THE RESULTS. ALL TESTS ARE TO BE DISTRIBUTED REASONABLY EVENLY THROUGH THE FULL DEPTH AND AREA OF PAVEMENT.

SURFACING

- IN URBAN AND RURAL RESIDENTIAL AREAS, THE ASPHALTIC CONCRETE (A.C.) SURFACING THICKNESS IS TO BE:
- 25mm (BCC TYPE 2) ON ACCESS TYPE STREETS AND LANEWAYS WITH TRAFFIC VOLUMES LESS THAN 4 X 105
- 50mm (BCC TYPE 3) FOR ARTERIAL AND SUB ARTERIAL ROADS; AND
- 40mm (BCC TYPE 3) FOR ALL OTHER STREETS.

IN COMMERCIAL AND INDUSTRIAL AREAS THE MINIMUM A.C. SURFACING THICKNESS IS TO BE 40mm

- WHERE STENCILED OR PATTERNED SURFACE TREATMENTS ARE PROPOSED AN ADDITIONAL 10mmSHALL BE ADDED TO THE DESIGN THICKNESS OF THE SURFACING. THE A.C. BINDER TYPE IS TO BE IN ACCORDANCE WITH AUSTROADS
- A.C. SURFACINGS ARE TO BE CONSTRUCTED IN ACCORDANCE WITH BRISBANE CITY COUNCIL STANDARDS (BCC S310 SUPPLY OF DENSE GRADED ASPHALT AND S320 LAYING OF ASPHALT).
- PRIMERS SEALS ARE REQUIRED TO BE PLACED UNDER ALL ASPHALT SURFACES. PRIMER SEALS SHALL CONSIST OF CUTBACK BITUMEN (AMCA) OR BITUMEN EMULSION TO MAIN ROADS SPECIFICATION (MRTS 11 SPRAYED BITUMINOUS SURFACINGS EXCLUDING EMULSIONS) AND MRTS 12 SPRAYED BITUMINOUS EMULSION SURFACINGS) WITH 10MM AGGREGATE. WHERE CUTBACK BITUMEN IS USED THE MINIMUM CURING TIME BEFORE THE NEXT SEALED LAYER (ASPHALT) CAN BE PLACED WILL BE FOURTEEN (14) DAYS. WHERE BITUMEN EMULSION IS USED THE MINIMUM CURING TIME BEFORE THE NEXT SEALED LAYER (ASPHALT) CAN BE PLACED WILL BE FOUR (4) DAYS.
- IN RURAL AREAS AND WHERE SPECIFIED, BITUMEN SPRAY SEAL SURFACING IS TO BE PROVIDED IN THE FORM OF A 2 COAT POLYMER SPRAY SEAL (14MM/7MM) IN ACCORDANCE WITH MAIN ROAD TECHNICAL SPECIFICATIONS (MRTS 18 POLYMER MODIFIED BINDERS, MRTS 11 SPRAYED BITUMINOUS SURFACINGS **EXCLUDING FMULSIONS)**

THE DEGREE OF SATURATION OF BASE COURSE PRIOR TO SURFACING IS TO BE LESS THAN 65%. TEST RESULTS DEMONSTRATING DEGREE OF SATURATION ARE TO BE PROVIDED TO COUNCIL'S NOMINATED REPRESENTATIVE AT THE PRESEAL INSPECTION AND AS A PART OF THE ON MAINTENANCE DOCUMENTATION

PAVEMENT

- THE ROAD PAVEMENT ADOPTED WILL BE DETERMINED BY THE ENGINEER AND APPROVED BY MORETON BAY REGIONAL COUNCIL. THIS PAVEMENT SHALL BE BASED ON SOIL TESTS TAKEN AT FORMATION LEVEL.
- ANY VARIATIONS TO THE NOMINAL PAVEMENT THICKNESS WILL BE PAID AT THE RATES SHOWN IN THE PRICED SCHEDULE OF RATES.

TOPSOIL

- ALL TOPSOIL ON ROADWORK AREAS SHALL BE STRIPPED AND STOCKPILED PRIOR TO THE COMMENCEMENT OF ANY ROADWORK OPERATIONS.
- A TOPSOIL DEPTH OF 150mm, HAS BEEN USED TO DETERMINE TOPSOIL AND EARTHWORK QUANTITIES. THE CONTRACTOR IS TO SATISFY HIMSELF OF THE ACCURACY OF THESE QUANTITIES AND TO MAKE ANY NECESSARY ALLOWANCE IF HE DISAGREES WITH THEM
- A TOPSOIL RESPREAD DEPTH OF 150mm ON ALLOTMENTS HAS BEEN USED TO DETERMINE EARTHWORK QUANTITIES

ROAD 3 (BRADMAN STREET & FLINDERS STREET) CONTROL LINE DETAILS

	PT	CHAINAGE	EASTING	NORTHING	BEARING	RAD/SPIRAL	A.LENGTH	DEFL.ANGLE
	IP 1	0.000	480858.894	7014713.201	187°29′57.03″			
	TC	74.434	480849.180	7014639.404	187°29′57.03″			
	IP 2	86.215	480847.222	7014624.532		R = -15.000	23.562	90°00'00.00"
	СТ	97.996	480862.094	7014622.574	97°29′57.03″			
1	TC	196.535	480959.789	7014609.714	97°29′57.03″			
	IP 3	203.608	480966.861	7014608.783		R = -45.000	14.147	18°00'45.00"
	СТ	210.682	480973.873	7014610.085	79°29′12.03″			
	TC	234.589	480997.380	7014614.447	79°29′12.03″			
	IP 4	245.192	481010.653	7014616.910		R = 13.500	21.206	90°00′00.00′
	СТ	255.795	481013.116	7014603.637	169°29′12.03″			
ш	TC	278.295	481017.222	7014581.514	169°29′12.03″			
FUTURE	IP 5	291.345	481019.623	7014568.577		R = 83.000	26.099	18°01'00.07"
리	СТ	304.395	481017.904	7014555.531	187°30′12.10″			
	TC	396.875	481005.828	7014463.843	187°30′12.10″			
	IP 6	423.186	481001.453	7014430.629		R = 33.500	52.622	90°00'00.00'
	CT	449.497	480968.240	7014435.004	277°30′12.10″			
	TC	641.596	480777.786	7014460.089	277°30′12.10″			
	IP 7	652.593	480763.903	7014461.918		R = 14.000	21.994	90°00′44.90
	CT	663.590	480765.735	7014475.800	7°30′57.00″			
	TC	721.680	480773.333	7014533.392	7°30′57.00″			
STAGE 3	IP 8	732.678	480775.165	7014547.276		R = -14.000	21.995	90°00′59.97′
TA	СТ	743.676	480761.281	7014549.103	277°29′57.03″			
0,	TC	863.314	480642.666	7014564.718	277°29′57.03″			
	IP 9	874.309	480628.785	7014566.545		R = 14.000	21.991	90°00′00.00′
GE 1	CT	885.305	480630.613	7014580.425	7°29′57.03″			
STA	IP 10	943.305	480638.182	7014637.929				
EXISTING STAGE 1	IP 11	947.459	480638.741	7014642.173		R = 14.000	8.308	34°00′07.78′
SIS	IP 12	951.613	480641.577	7014645.379				
٦	IP 13	961.944	480648.423	7014653.116	41°30′02.74″			

ROAD 4 (BRADMAN STREET) CONTROL LINE DETAILS

			11071	וטראוטן ד ט	IAN STILL	T/ CONTINO	L LINE DE 17	TILO	
		PT	CHAINAGE	EASTING	NORTHING	BEARING	RAD/SPIRAL	A.LENGTH	DEFL.ANGLE
	m	IP 1	0.000	480772.491	7014540.324	68°38′02.13"			
묎	AGE 3	TC	11.397	480783.105	7014544.476	68°38′02.13"			
FUTURE	STA	IP 2	14.924	480786.461	7014545.789		R = 14.000	7.053	28°51′54.91"
-	٥,	СТ	18.450	480790.033	7014545.318	97°29′57.03"			
I	•	IP 3	243.037	481012.699	7014516.007	97°29′57.03″			

THIS SCALE SHOWN IS ORIGINAL DRAWING SCALE ☐ A.FRASER ☐ J.PAPPAS RPEQ 5691 ☐ RPEQ 608

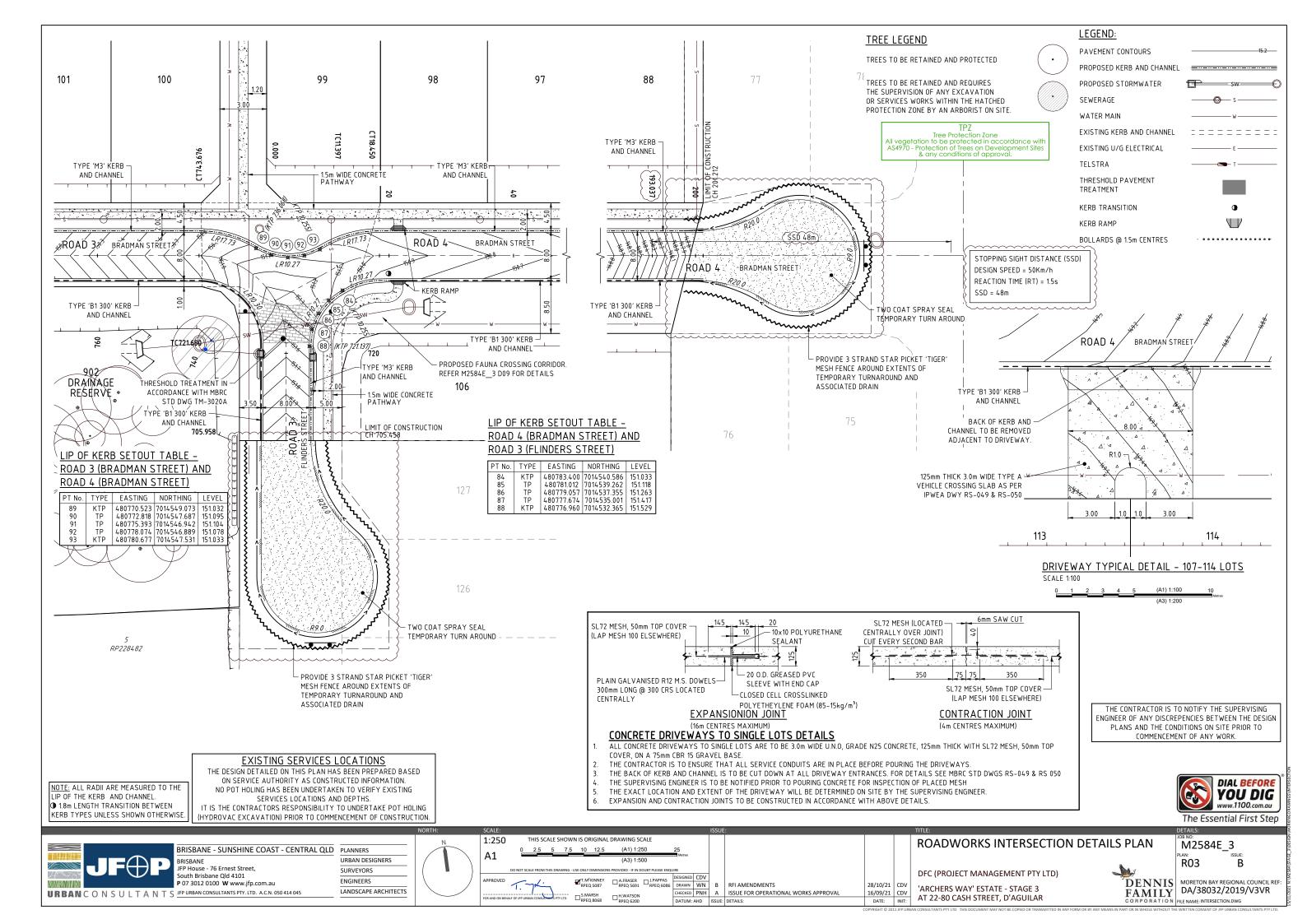
DFC (PROJECT MANAGEMENT PTY LTD)

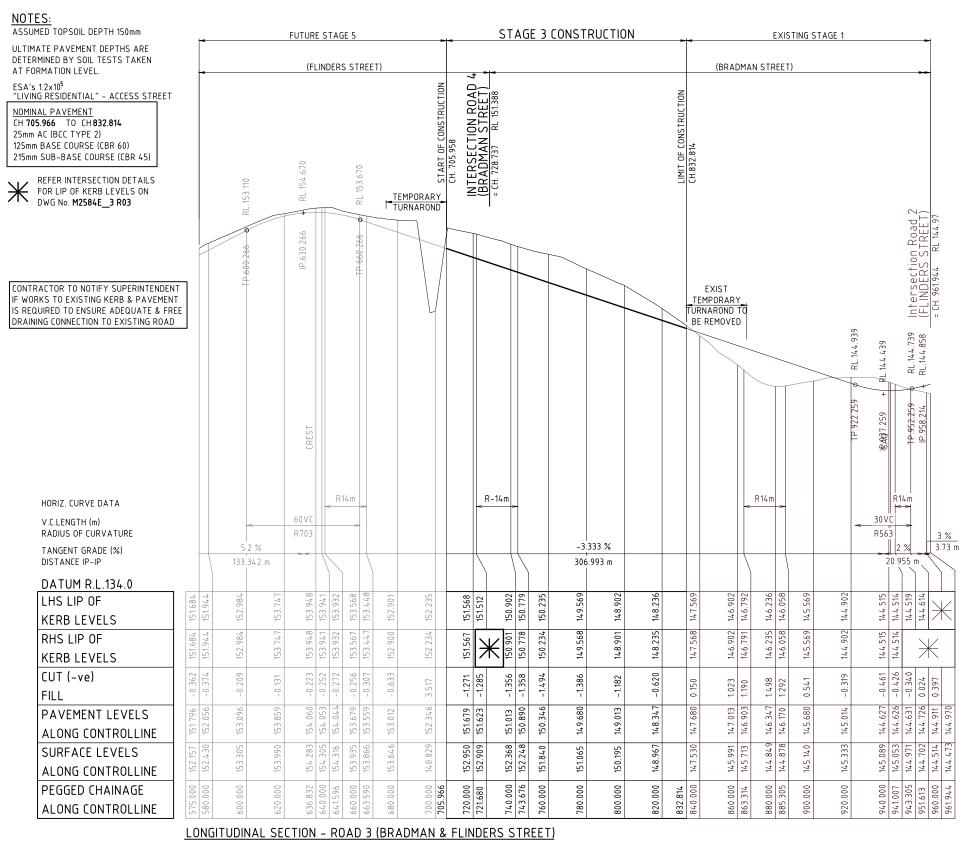
ROADWORKS NOTES AND DETAILS PLAN

M2584E 3 R02

MORETON BAY REGIONAL COUNCIL REF. FAMILY DA/38032/2019/V3VR FILE NAME: ROADWORKS, DWG

Α

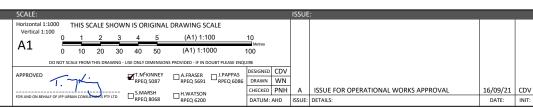



BRISBANE - SUNSHINE COAST - CENTRAL QLD PLANNERS BRISBANE

outh Brisbane Old 4101 **P** 07 3012 0100 **W** www.jfp.com.au URBAN CONSULT ANTS JFP URBAN CONSULTANTS PTY. LTD. A.C.N. 050 414 045 URBAN DESIGNERS SURVEYORS ENGINEERS LANDSCAPE ARCHITECTS

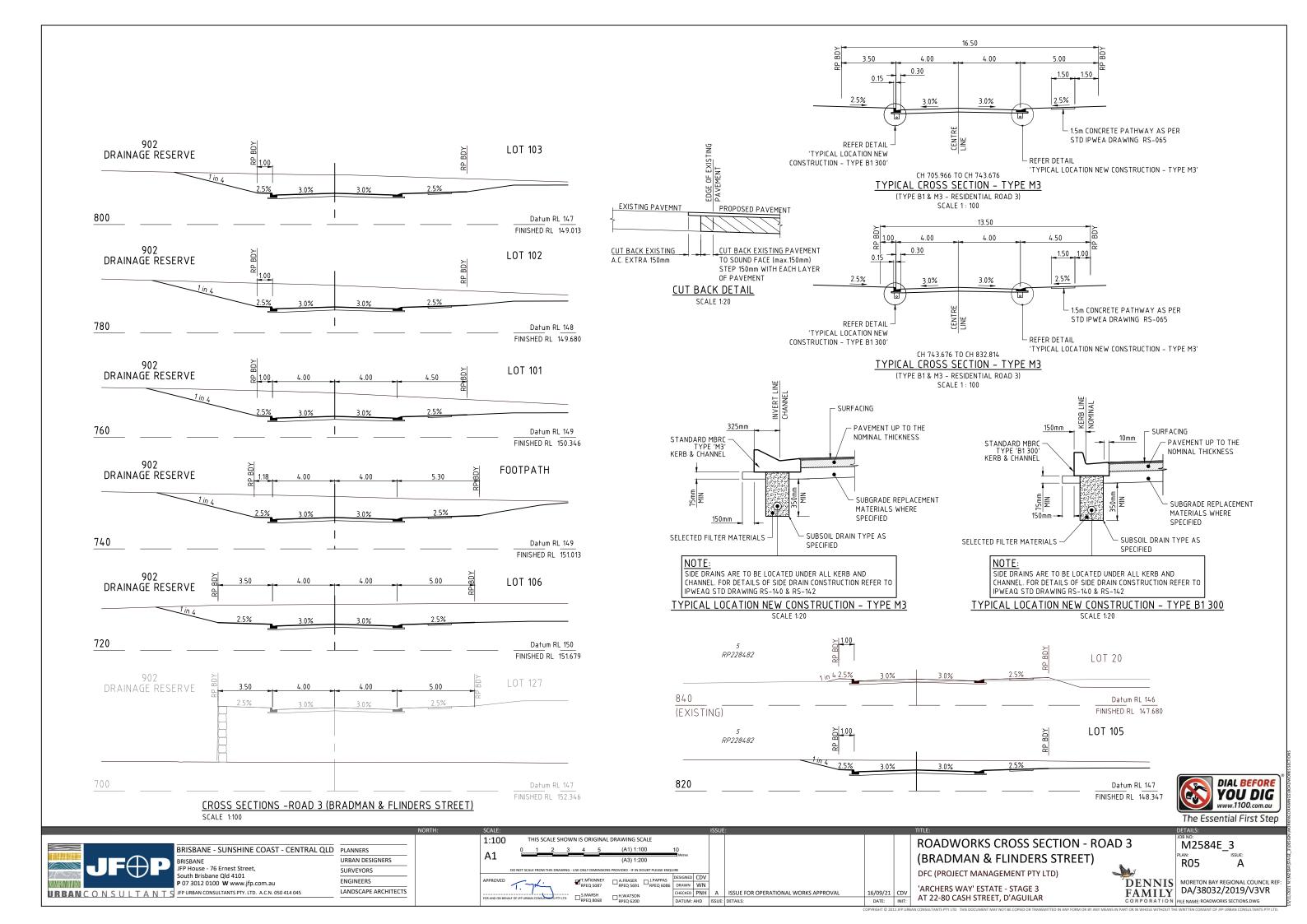
ISSUE FOR OPERATIONAL WORKS APPROVA

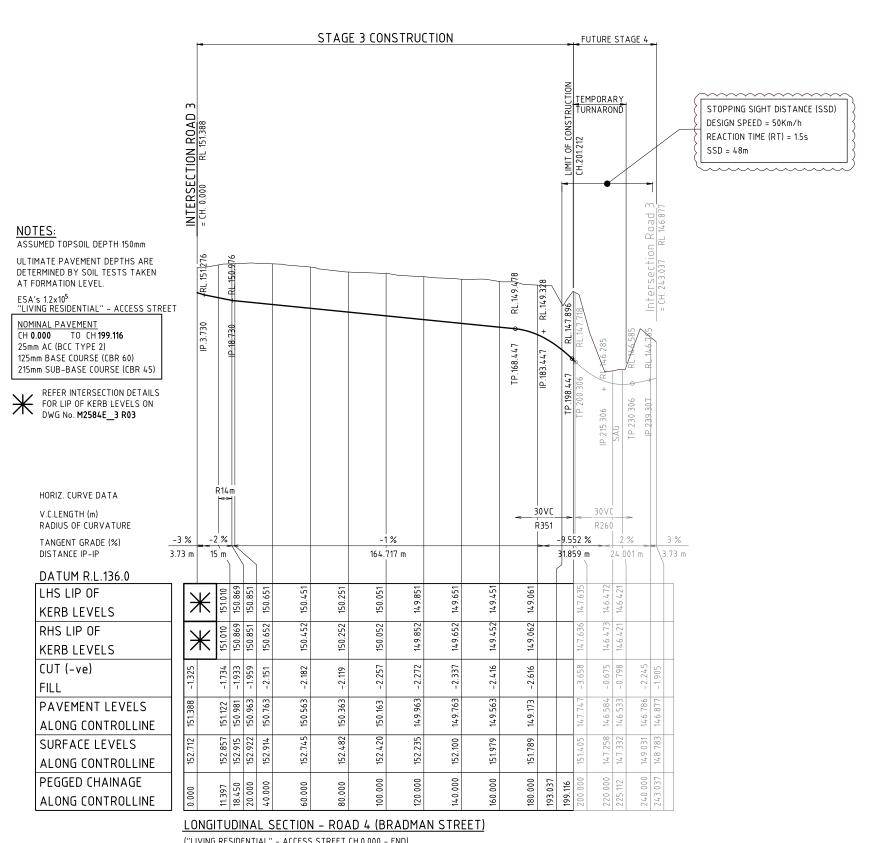
'ARCHERS WAY' FSTATE - STAGE 3 AT 22-80 CASH STREET, D'AGUILAR


("LIVING RESIDENTIAL" - ACCESS STREET CH. 705.966 - CH. 832.814)

BRISBANE - SUNSHINE COAST - CENTRAL QLD PLANNERS BRISBANE P House - 76 Ernest Street, South Brisbane Qld 4101

URBAN DESIGNERS SURVEYORS ENGINEERS LANDSCAPE ARCHITECTS

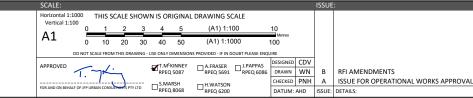

ROADWORKS LONGITUDINAL SECTION -**ROAD 3 (BRADMAN & FLINDERS STREET)**


DFC (PROJECT MANAGEMENT PTY LTD)

'ARCHERS WAY' ESTATE - STAGE 3

M2584E_3 Α

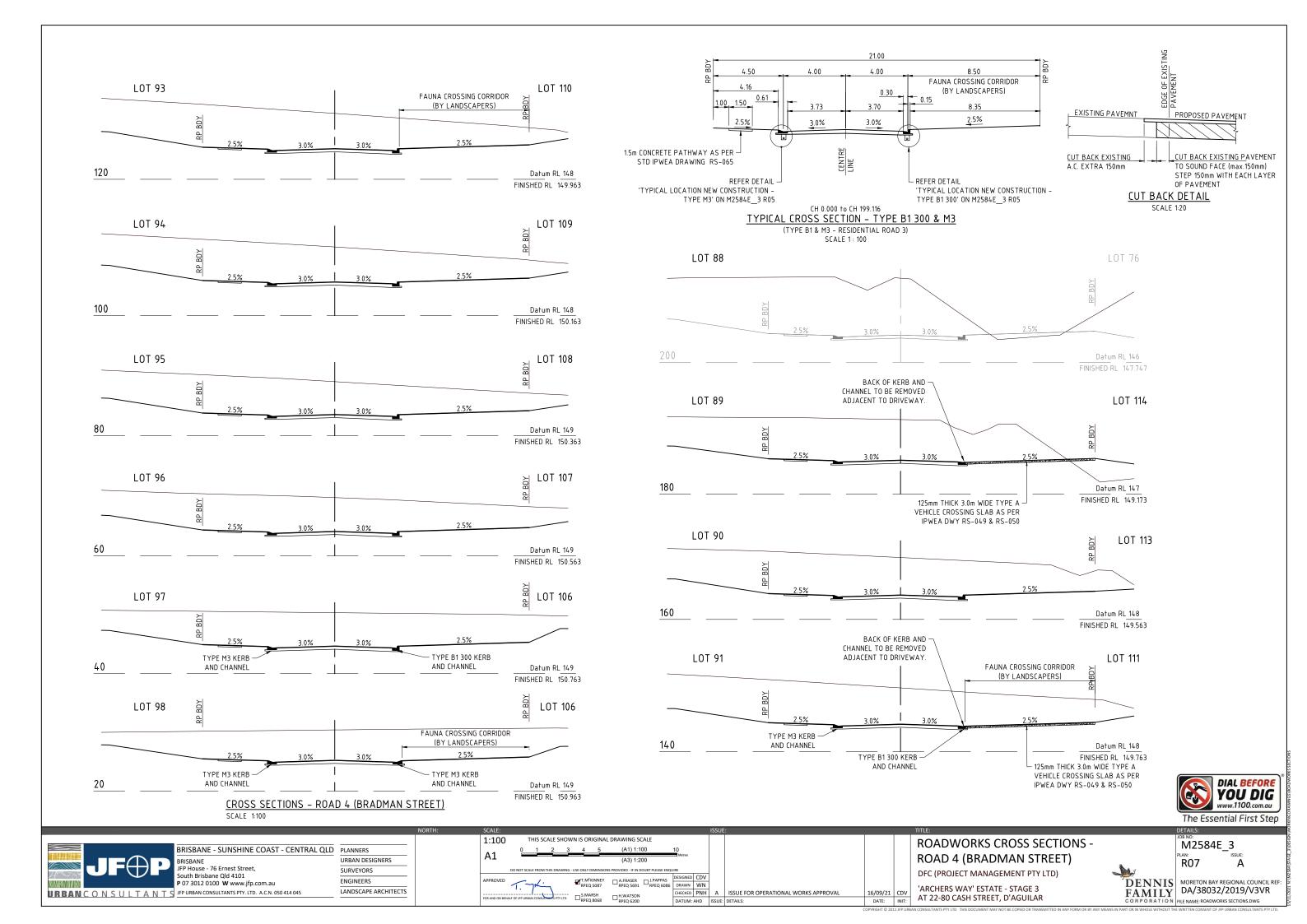
MORETON BAY REGIONAL COUNCIL REF. FAMILY DA/38032/2019/V3VR AT 22-80 CASH STREET, D'AGUILAR CORPORATION FILE NAME: ROADWORKS SECTIONS.DWG

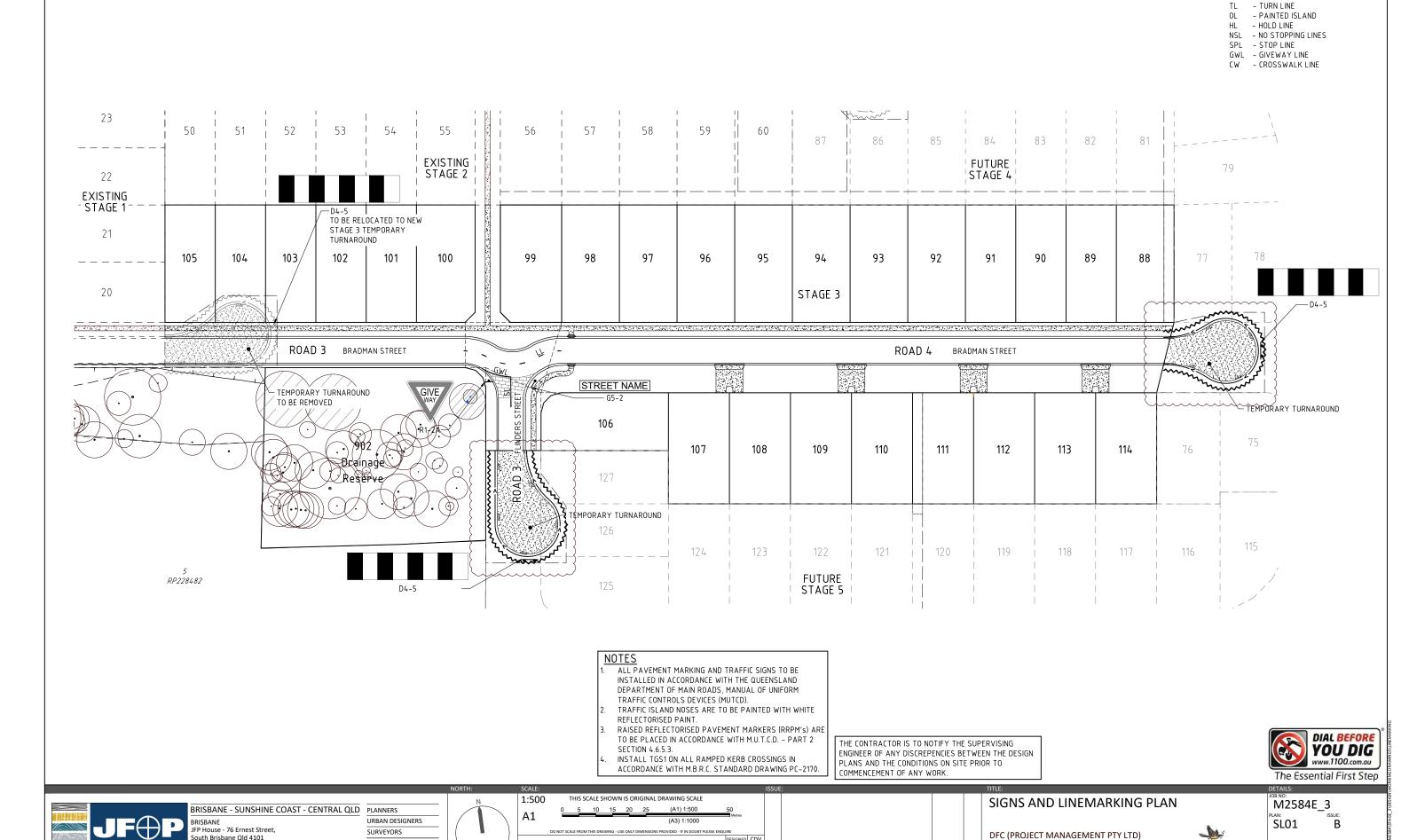

("LIVING RESIDENTIAL" - ACCESS STREET CH.0.000 - END)

BRISBANE - SUNSHINE COAST - CENTRAL QLD PLANNERS BRISBANE JFP House - 76 Ernest Street,

URBAN DESIGNERS SURVEYORS ENGINEERS LANDSCAPE ARCHITECTS

ROADWORKS LONGITUDINAL SECTION -**ROAD 4 (BRADMAN STREET)**


DFC (PROJECT MANAGEMENT PTY LTD)


FAMILY DA/38032/2019/V3VR CORPORATION FILE NAME: ROADWORKS SECTIONS.DWG

M2584E_3 R06 В MORETON BAY REGIONAL COUNCIL REF.

'ARCHERS WAY' ESTATE - STAGE 3

16/09/21 CDV ARCHERS WAY ESTATE - STAGE 3 DATE: INIT: AT 22-80 CASH STREET, D'AGUILAR

RFI AMENDMENTS

CHECKED PNH A ISSUE FOR OPERATIONAL WORKS APPROVAL

South Brisbane Old 4101

URBAN CONSULTANTS JFP URBAN CONSULTANTS PTY. LTD. A.C.N. 050 414 045

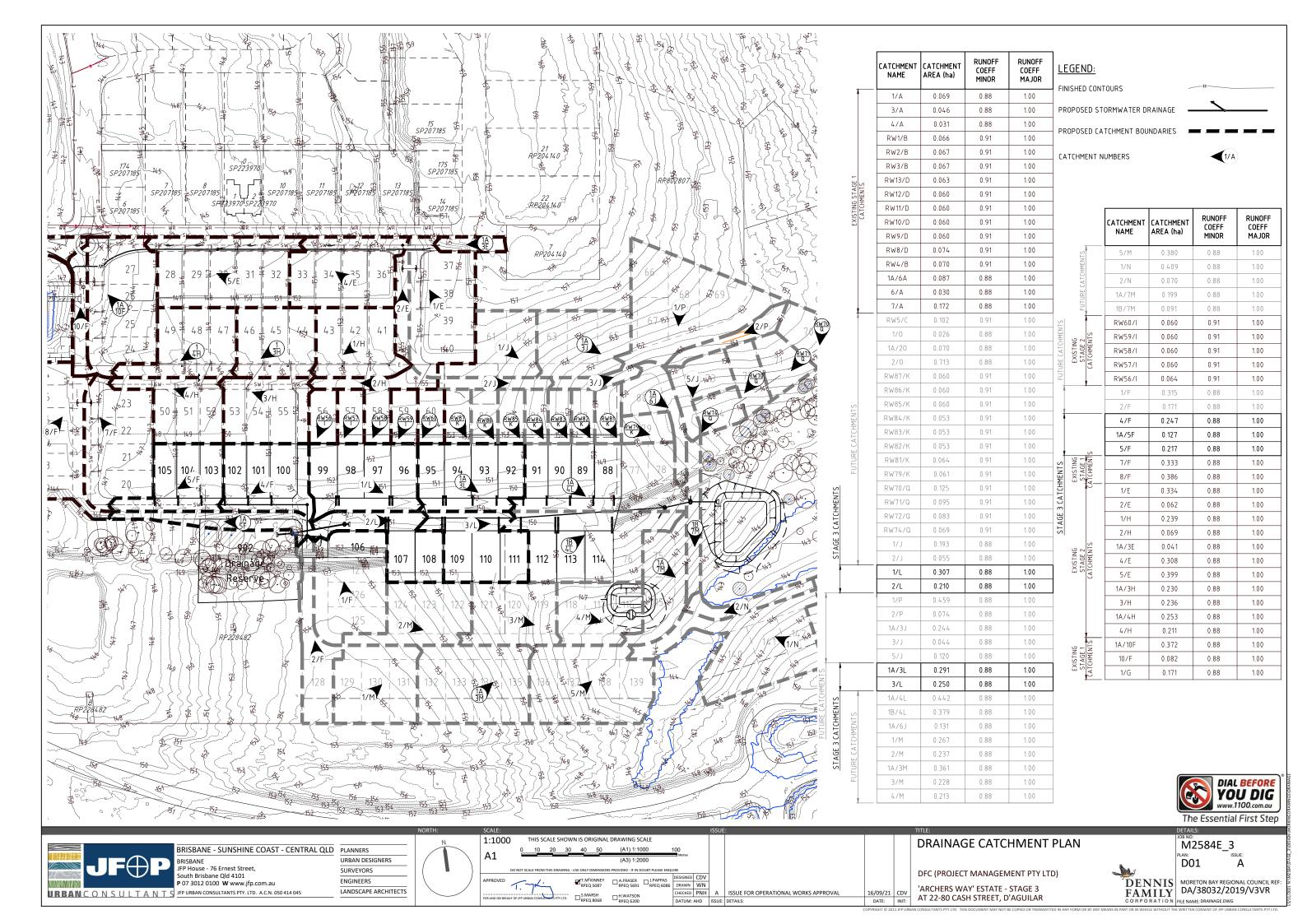
P 07 3012 0100 **W** www.jfp.com.au

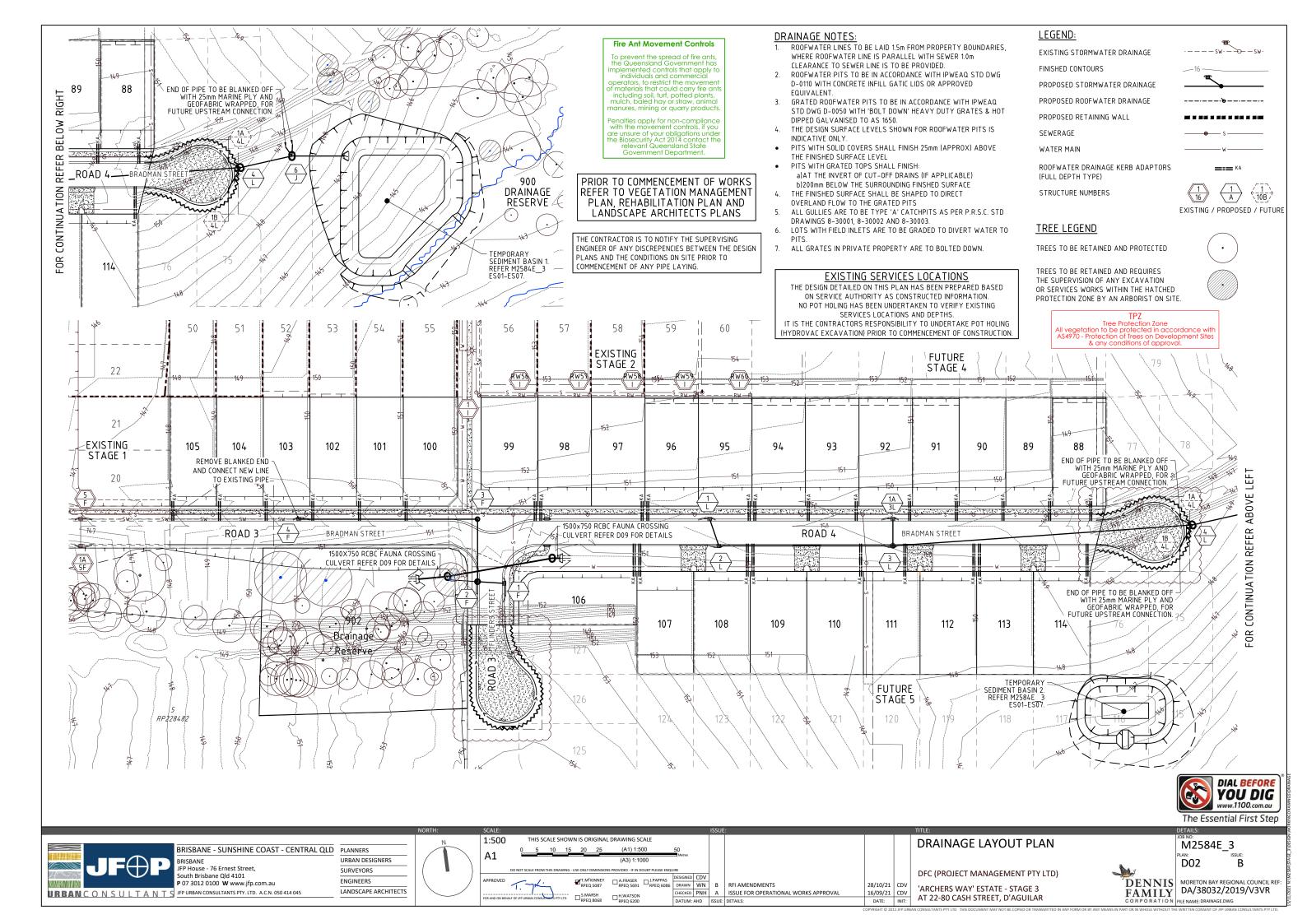
ENGINEERS

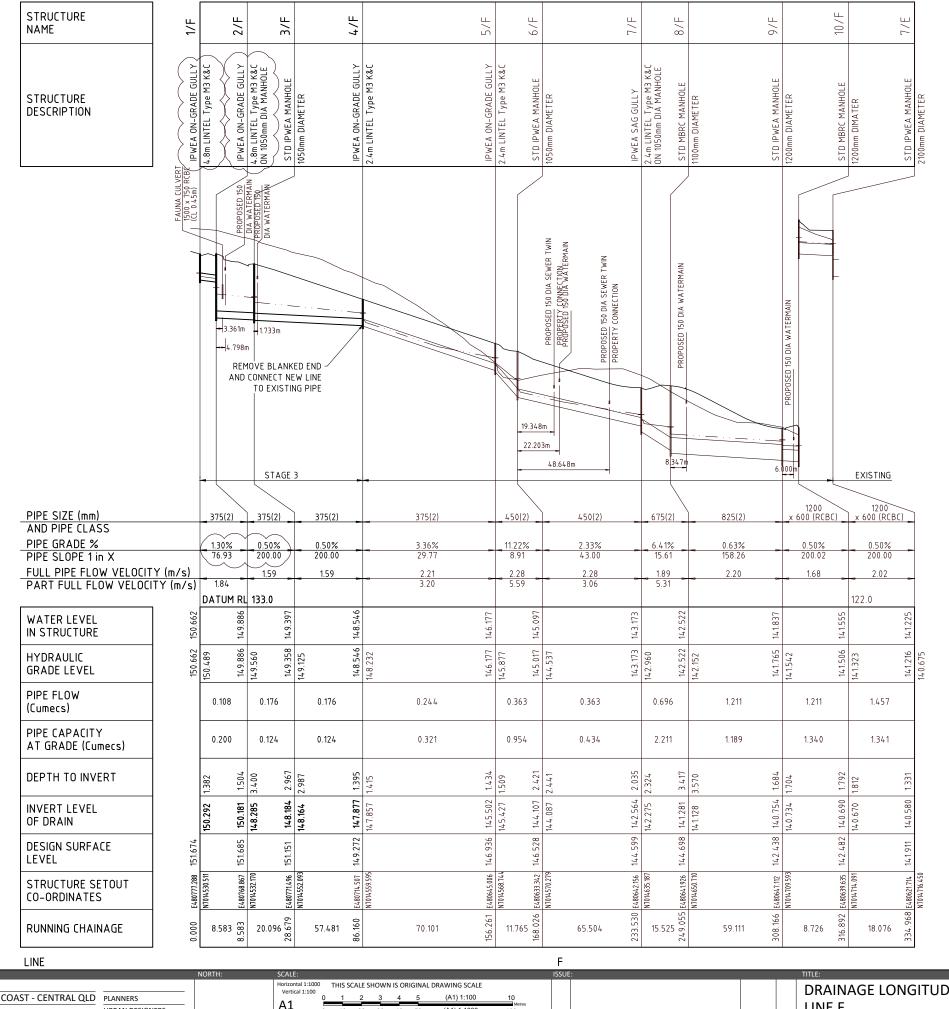
LANDSCAPE ARCHITECTS

- SEPARATION LINE - BARRIER LINE - LANE LINE - EDGE LINE

- CONTINUITY LINE

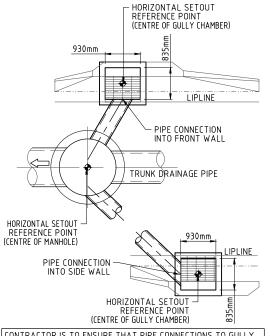

MORETON BAY REGIONAL COUNCIL REF.


FAMILY DA/38032/2019/V3VR


28/10/21 CDV 16/09/21 CDV ARCHERS WAY' ESTATE - STAGE 3 AT 22-80 CASH STREET, D'AGUILAR

28/10/21 CDV

CL



REFERENCE POINT LOCATION FOR STORMWATER DRAINAGE STRUCTURES

3 TOINT IW	TILIN DINA	INAGE 3 III	OCTORES
STRUCTURE TYPE		ERENCE LOCATION OUT CO-ORDINATES)	VERTICAL REFERENCE LEVEL
MANHOLE AND ROOFWATER PIT		€ MAIN SHAFT	FINISHED SURFACE LEVEL - MANHOLE/PIT COVER
KERB INLET LIP IN LINE (DS-063)		CENTRE OF GULLY CHAMBER	LIP OF KERB
FIELD INLET AND ROOFWATER PIT		CENTRE OF GULLY CHAMBER	TOP OF GRATE OR COVER
HEADWALL		© F HEADWALL (END OF OUTLET PIPE)	INVERT OF OUTLET PIPE.

CONTRACTOR IS TO ENSURE THAT PIPE CONNECTIONS TO GULLY PITS ARE NOT CONSTRUCTED INTO THE CORNER OF TWO WALLS

GULLY PIT PIPE CONNECTION DETAIL SCALE: NTS

> NOTE: GRATED LIDS TO BE DEPRESSED 50mm BELOW FINISHED SURFACE LEVEL

REFER M2584E 3 D08 FOR ALLOWABLE STORMWATER PIPE CONSTRUCTION EQUIPMENT LOAD TABLE

South Brisbane Old 4101 **P** 07 3012 0100 **W** www.jfp.com.au URBANCONSULTA NTS JFP URBAN CONSULTANTS PTY. LTD. A.C.N. 050 414 045

Fire Ant Movement Controls

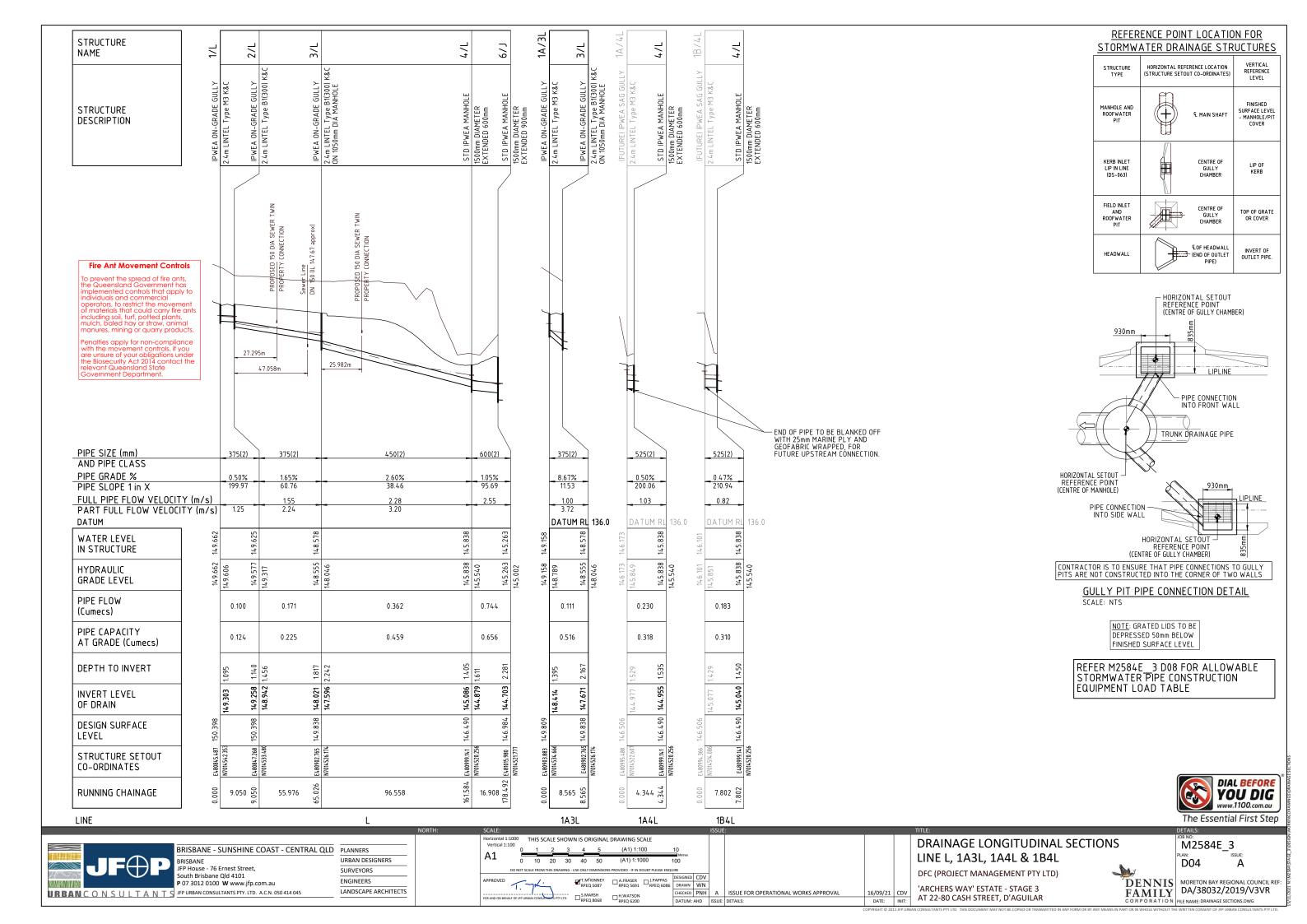
nanures, mining or quarry products

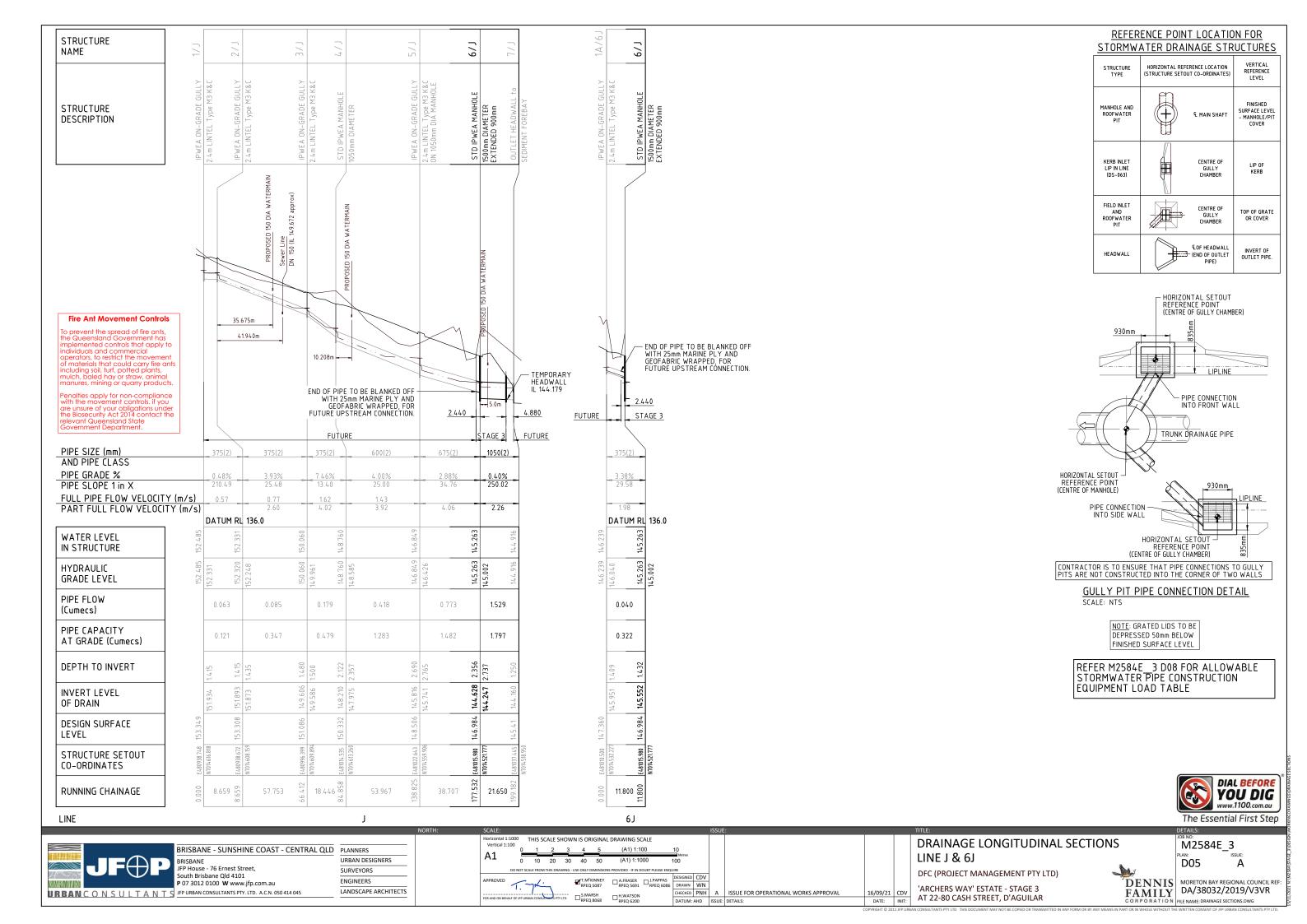
enalties apply for non-compliance with the movement controls, if you are unsure of your obligations under the Biosecurity Act 2014 contact the relevant Queensland State Government Department.

> BRISBANE - SUNSHINE COAST - CENTRAL QLD PLANNERS BRISBANE

URBAN DESIGNERS SURVEYORS ENGINEERS LANDSCAPE ARCHITECTS

RFI AMENDMENTS CHECKED PNH A ISSUE FOR OPERATIONAL WORKS APPROVAL


DRAINAGE LONGITUDINAL SECTIONS LINE F


DFC (PROJECT MANAGEMENT PTY LTD) 'ARCHERS WAY' ESTATE - STAGE 3

AT 22-80 CASH STREET, D'AGUILAR

M2584E_3 D03 В

MORETON BAY REGIONAL COUNCIL REF. FAMILY DA/38032/2019/V3VR CORPORATION FILE NAME: DRAINAGE SECTIONS, DWG

		LOCATION	1		TI	ME	SUB	-CATCH	IMENT RU	NOFF			INL	ET DESIG	īN						DRAIN DESI	ΞN						HEA	ADLOSSE	5				PART	FULL			DESIGN	LEVELS		
						tc I	C10	С	A (>	A +CA	, Q				Qg	QЬ	tc	1	+CA	Qt	Qm Qs	Qр	L	S	٧	T		V2/2g	Ku	hu Kl	hl	Kw hv	v Sf		٧ţ)					
DESIGN ARI	STRUCTURE No.	DRAIN SECTION	SUB-CATCHMENTS CONTRIBUTING	LAND USE	SLOPE 0	TIME OF CON	10yr RUNOFF CO-EFFICIENT	CO-E OF RI		SUM OF (C × A)	SUB-CA DISCHAF			INLET T	FLOW INTO INLET	BYPASS FLOW BYPASS	_	RAIN	T0TAL (C × A)	MAJOR TOTA	MAJOR SURFACE FLOW CAPACITY MAJOR SURFACE FLOW	PIPE FLOW	REA(PIPE GRADE PIPE / BOX	FLOW VELOCITY	TIME OF FLOW IN REACH	STRUCTURE CHART No. STRUCTURE RATIOS FOR 'K' VALUE CALCULATIONS	VELOCITY HEAD	U/S HEADLOSS COEFFICIENT	ADLOSS T. HEAD	LAT. PIPE STRUCT. HEADLOSS	W.S.E CO-EFFICIENT CHANGE IN W.S.E	PIPE FRICTI		DEPTH		DRAIN SECTION H.G.L	UPSTREAM H.G.L	LAT. H.G.L W.S.E.	SURFACE OR K&C INVERT LEVEL	STRUCTURE No.
97S 10 100	3/J	3/J to 4/J	1/J;2/J;1A/3J; 3/J	ROAD/VERGE	5	nin mm .00 21 .00 32	_	_	ha h 0.044 0.0 0.04	38 0.038			% l/s 92 710 H 0.702 (0.	1	l/s 23	0 1A	/6J 11.10 11.10	161	ha 0.471 0.536	1/s 363	l/s l/s (Pipe flow= Si		18.446 7.	46 375(m/s 1.62	_	Qg 0.017 Qo 0.179 Do 375 Routine 2.15 Join Pipes: 2/J and 1A/3J Ve11 0.742 Ve12 0.722 Eq Dia 530 Anqle 205 Flow 0.162	0.134	0.74 0	CHAI S/Do Du/D	0o 1.41 Q.g/0	0.74 0.09 25 Case3 0 0.10 K 0.60 14 Ku 0.74 Kw	9 1.04		m m/ 159 4.02			_	m m	m 0 151.086	3/J
10 100	4/J	4/J to 5/J	1/P;2/P;1/J;2 /J;1A/3J;3/J	МН										41			11.29	160 242	0.940 1.069	719	1235 301 (Pipe flow= Si				1.43	0.63	Qo 0.418 Do 600 Routine 2.14 Equiv defin 0 CHART 49 High vel la† 3/J Dhv 375 Qhv 0.178 Dhv/Div 0.8 Dhv/Dio 0.63 Qhv/Qo 0.42 H 3.02 Low vel la†1 2/P Div 450 Qiv 0.240 Div/Do 0.75 Qlv/Qo 0.58 L 1.14 H-L 1.88 No grafe flow: H-L -0.2 = 1.68	0.104	1.68 0	Ku=h Comb Join 2/P Vel1 Eq D CHAI K'w I	Pipes: and 3/J 1.607 Vel2 ia \$85 Angl RT 50 Du/D 0.05 Vu 1.55 .19 Kw 0.25	n line case 1.511 2 191 Flow 0.41 30.98 alpha 0 WSE 0.03	8	0.229 0.	239 3.92		148.585 146.849		148.76	0 150.332	4/J
10 100	5/J	5/J to 6/J	RW87/K,RW8 6/K,RW85/K, RW84/K,RW8 3/K,RW82/K, RW81/K,RW79 /K,RW70/Q, W71/Q,RW72/ Q,RW74/Q,1/ P,2/P,1/J,2/J, 1A/3J,3/J,5/J	ROAD/ALLOT		0.00 16 0.00 25	8 4	0.88	0.120 0.1: 0.1:	0.106 0.120	49 85	49 19. FLOW WIDT				13 18/	7M 11.92 11.92	156 237	1.808 2.025	1333	(Pipe flow= Si		38.707 2. atten flows		2.10	0.31	Qg 0.034 Qo 0.773 Do 675 Flow RW79/K made eqv grafe flow Routine 2.19 CHART 4.8 DU/Do 0.89 Qu/Qo 0.53 K 1.29 d/Do 2.0 chrl Qg/Qo 0.28 Kg 0.51 d/Do 1.5 chrl Qg/Qo 0.28 Kg 0.51 d/Do 1.00 Interp value Kg 0.59 Ku=Kw= 1.88 Combined pipes in line case Join Pipes:	0.225	1.88 0.	RW7 Vel1 Eq D CHAI S/Do Du/E S/Do Inter	4/0 and 4/ 1.441 Vel2 ia 707 Angle o 2.5 Do 1.05 Qg/0 o 1.45 cor 0.	1.88 0.42 J 1.341 1.78 Flow 0.55	3 0.78	0.303 0.	351 4.0€	146.426 145.313		146.849	146.84	9 148.506	5/J
10 100	1A/3L	1A/3L to 3/L	1A/3L	ROAD/ALLOT		0.00 16 0.00 25	8 4	0.88 1.00		56 0.256 91 0.291		146 1.0 FLOW WIDT	00 320 H 2.687 (0.		111	35 1A	'4L 10.00 10.00		0.256 0.291	205	(Pipe fl	111 ow= Grate	8.565 8. flow)	.67 375(1.00	0.14	Qg 0.111 Qo 0.111 Do 375 CHRT 32: Vo2/2gDo 0.14 H/Do 0.00 Kg side flow 7.23 end flow 5.64	0.051	7.23 0	369		7.23 0.36	9 0.40	0.034 0	.118 3.72	148.789 148.046	148.789 148.555	149.158	149.15	8 149.809	1A/3L
10 100	3/L	3/L to 4/L	1/L,2/L,1A/3L ,3/L	ROAD/ALLOT		0.00 16/0.00 25		0.88	0.250 0.2			116 1.0 FLOW WIDT				27 18/		163 5 247		726	(Pipe flow= Si		26.558 2. Aften flows		2.28	0.71	0g 0.87 0o 0.362 Do 450 Flow 2/L made eqv grahe flow Angle 94 (hart 47.570e 25 chartdeg Du/Do 0.83 K0 2.07 K0.5 2.30 Uu/Do 0.30 Cg 1.21 K 2.34 S/Do 2.5 K0 2.07 K0.5 2.30 K 2.34 S/Do 2.5 K0 2.07 K0.5 2.30 K 2.34 S/Do 2.5 K0 2.07 K0.5 2.30 K 2.35 CHART 46 S/Do 2.5 K0 16.7 K0.5 2.01 K 2.08 S/Do 2.5 K0 16.7 K0.5 2.01 K 2.08 S/Do 2.0 K0 1.97 K0.5 2.02 K 2.03 Interp val for S/Do 2.39 K u 2.07 K vals above for stepped pipes as grahe flow grate flow decreased by 0.167 from 2/L Routine 2.2 CHART 48 Du/Do 0.83 Ou/Qo 0.46 K 1.38		1.92 0	d/Do d/Do Ku=k Comt Join 1A/3 Vel1 Eq D CHAI S/Do Inter K va	o 1.\$ chrt Qq o 1.00 Interp Kw = 1.82 obined pipes Pipes: BL and 2/L 1.515 Vel2 (ia \$18 Angle o 2.5 o 1.15 Qg/C o 1.15 Qg/C o 1.67 cor 0.	218 Flow 0.27 0 0 0.24 K 0.92 21 Ku 1.13 Kw 1. = 1.85 Kw= 1.85 s as pipe flow	.32 .38		301 3.20	148.046 145.536			148.51	8 149.838	3/L
10 100	1A/4L	1A/4L to 4/L	1A/4L	ROAD/ALLOT		0.00 16: 0.00 25		0.88	0.442 0.3		182	230 0.0 FLOW WIDT		13S.111 000 3 month		0	10.00		0.389 0.442	312	(Pipe fl	230 a ow= Grate	4.344 0. flow)	.50 525(1.03	0.07	Qg 0.230 Qo 0.230 Do 525 CHRT 32: Vo2/2gDo 0.10 H/Do 0.63	0.054	5.98 0.		aged Nd 1.2	5.98 0.32	4 0.26	0.011		145.511 145.489	145.849 145.838		146.17	3 146.506	1A/4L
10 100	1B/4L	1B/4L to 4/L	1B/4L	ROAD/ALLOT	10	0.00 16 0.00 25	8 4	0.88 1.00	0.379 0.3 0.3	34 0.334 79 0.379	156 267	183 0.0 FLOW WIDT	00 282 H 2.660 (0.	13S.111 000 3 month	183	0	10.00	168	0.334 0.379	267	(Pipe fl	183 ow= Grate		47 525(0.82	0.13	Kg side flow 5.98 end flow 4.61 Qg 0.183 Qo 0.183 Do 525 CHRT 32: Vo2/2gDo 0.06 H/Do 0.45	0.034	7.30 0	250		7.30 0.25	0 0.17	0.013		145.611 145.574	145.851 145.838	146.101	146.10	1 146.506	1B/4L
10 100	4/L	4/L to 6/J	1/L;2/L;1A/3L ;3/L;1A/4L;1B ;4L	МН										45				241	1.879		2290 514 (Pipe flow= Si	um upstr a	itten flows)	2.55		Kg side flow 7.30 end flow 5.49 Qo 0.71.4 Do 600 Routine 3.2 Join Pipes: 1A/4L and 3/L Vel1 1.007 Vel2 2.219 Eq Dia 643 Angle 200 Flow 0.571 Routine 2.21 CHART 52 B 900 In line Eqv 1A/4L & 3/L Latri 1B/4L Determine KI DI/Do 0.88 B/Do 1.50 Qu/Qo 0.77 Do/Du 0.93 Do/Di 1.14 K'I 1.53 MI 0.53 KI=K'I+MI= 0.81		0.90 0	Dete K'u 1 Kw=1 Comt Join Eqv Vel1 Eq D CHAI K'w I Ku 0	Ku= 0.90 bined pipes Pipes: 1A/4L & 3/1 1.758 Vel2 ia 785 Angli RT 50 Du/Di 0.05 Vu 1.54 .91 Kw 0.93	184 Flow 0.74 1.31 alpha 0 WSE 0.31 = 0.90 Kw= 0.90	.90			145.313	145.540 145.313			8 146.490	
10 100	1/L	1/L to 2/L	1/L	ROAD/ALLOT	10	0.00 16 0.00 25	8 4	0.88 1.00	0.307 0.2	70 0.270 07 0.307	126 216	126 1.0 FLOW WIDT	00 320 H 2.524 (0.	1 000 3 month	100	26 1A	/3L 10.00	168 254	0.270 0.307	217	(Pipe fl	100 ow= Grate		.50 375(0.90	0.15	Qg 0.100 Qo 0.100 Do 375 CHRT 32: Vo2/2gDo 0.11 H/Do 0.00 Kg side flow 7.72 end flow 5.93 Part full downstream pipe	0.041	1.00 0	Upst pipe	obv 149.678	49.662 below o		0.029 0.	255 1.25	149.678 149.633			149.6€	2 150.398	1/L
10 100	2/L	2/L †o 3/L	1/L;2/L	ROAD/ALLOT		0.00 160 0.00 25		0.88	0.210 0.11	35 0.185 10 0.210	86 148	86 1.0 FLOW WIDT	00 301 H 2.101 (0.0	4 00 3 month	73	14 3,		167 253		363	(Pipe flow= Si		55.976 1. atten flows		1.55	0.60	Qg 0.072 Qo 0.171 Do 375 Flow 1/L made eqv grate flow CHRT 32: Vo2/Zg00 0.33 H/Do 0.00 Kg side flow 4.69 end flow 4.00 K vals above for stepped pipes as grate flow grate flow decreased by 0.099 from 1/L Angle 72 Chart 45 S/Do 2.5 chartdeg Du/Do 1.00 K0 2.16 K05.18 Qu/Zdo 5.58 Cq 0.88 K 1.85		2.12 0	S/Do S/Do Inter CHAI S/Do S/Do Inter	o 1.5 K0 2.74 rp val for S RT 44 o 2.0 K0 1.99 o 1.5 K0 2.12 rp val for S	2.51 0.30 7 K0.5 2.34 K 2 K0.5 2.80 K 2. (Do 1.82 Kw 2.5 K0.5 2.11 K 2.1 K0.5 2.17 K 2.1 (Do 1.82 Ku 2.1 s as pipe flow	.36 80 51 0 6 2		245 2.24	149.317 148.396			149.62	5 150.398	2/L
10 100	1/F	1/F to 2/F	1/F	ROAD/ALLOT	10	0.00 16 0.00 25	8 4	0.88	0.315 0.2 0.3	77 0.277 15 0.315	129 222	129 3.3 FLOW WIDT	33 584 H 1.952 (0.0	1 100 3 month	92	38	10.00	168 254	0.277 0.315	222	(Pipe fl	92 ow= Grate		.93 375(0.83	0.14	Qg 0.092 Qo 0.092 Do 375 CHRT 32: Vo2/2gDo 0.09 H/Do 0.34 Kg side flow 6.97 end flow 5.37	0.035	6.97 0.		k-h-	6.97 0.24	_			150.636 150.556	150.762 150.738	151.006	151.00	6 151.674	1/F
10 100	2/F	2/F to 3/F	1/F;2/F	ROAD/ALLOT	10	0.00 16 0.00 25	8 4	0.88	0.171 0.19	0.150 71 0.171	70 120	70 3.: FLOW WIDT	33 549 H 1.371 (0.0	1 00 3 month	59	11 1A		167 253		342	(Pipe flow= Si		20.096 2. otten flows		1.35	0.25	Ng side 10w 6-97 end 10w 5-37 Qg 0.058 Qo 0.149 bo 375 Angle 87 Chart 4.7 S/Do 2.5 chartdeg Du/Do 100 K0.192 K05-2.12 Qu/Zo 0.61 Cg 0.8 4 K 2.09 S/Do 2.0 K0 2.44 K0.5 2.40 K 2.41 S/Do 1.5 K0 2.67 K0.5 2.58 K 2.60	0.093	2.18 0	Inter CHAI S/Do S/Do	RT 46 5 2.0 K0 2.04 5 1.5 K0 2.09	2.55 0.23 /Do 1.63 Kw 2.5 K0.5 1.92 K 1. K0.5 2.31 K 2.2 /Do 1.63 Ku 2.1	94 27	0.146 0.	193 2.60	150.536 150.010	150.536 150.158	150.738	150.77	3 151.685	2/F
10 100	3/F	3/F to 4/F	1/F;2/F	МН										41			10.39 10.39	165 250		338	1109 188 (Pipe flow= Si				1.35	0.71	Qo 0.149 Do 375 CHART 50 Du/Do1.00 alpha 91 K'w 0.30 Vu 1.35 WSE 0.20	0.093	1.81 0				_	0.418 0.	.185 2.74	149.990 148.252			150.18	6 151.151	3/F
10 100	4/F	4/F to 5/F	1/F;2/F;4/F	ROAD/ALLOT		0.00 16 0.00 25	8 4	0.88	0.247 0.2	17 0.217 47 0.247	101 174	101 4.: FLOW WIDT	50 679 H 1.623 (0.0	1 100 3 month	76	26 5	/F 11.10	161 244	0.644 0.733	497	(Pipe flow= Si	218 r um upstra	70.101 3. atten flows	36 375()	1.98	0.59	Ku 1.81 Kw 2.11 Qg 0.072 Qo 0.218 Do 375 CHART 33 Angle 0 S/Do 2.5 Du/Do 1.00 Qg/Qo 0.33 K 1.16 S/Do 1.75 cor 0.25 Ku 1.41 Kw 1.41	0.200	1.41 0	282		1.41 0.28	2 1.55	1.088 0.	227 3.13	148.232 145.877	148.232 146.179		N Y	AL BE OU I	DIG
													NORTH:																									The	e Essen	ial Fir	-

BRISBANE - SUNSHINE COAST - CENTRAL QLD PLANNERS BRISBANE JFP House - 76 Ernest Street, South Brisbane Qld 4101 P 07 3012 0100 W www.jfp.com.au

URBAN DESIGNERS SURVEYORS ENGINEERS LANDSCAPE ARCHITECTS NOT TO SCALE THIS SCALE SHOWN IS ORIGINAL DRAWING SCALE USE ONLY DIMENSIONS PROVIDED: 7- IN DOUBT PLEASE REQUIRE

■ T.M.F.KINNEY
RPEQ 5091

□ AFRASER
RPEQ 5091
□ RPEQ 6200

□ BESIGNED CDV
DRAWN WN
CHECKED PNH A ISSUE FOR OPERATIONAL WORKS APPROVAL
DATUM: AHD ISSUE: DETAILS:

DRAINAGE CALCULATIONS TABLES -SHEET 1 OF 2

DFC (PROJECT MANAGEMENT PTY LTD)

M2584E_3 D06

DENNIS
FAMILY
CORPORATION
FILE NAME: DRAINAGE SECTIONS.DWG

FILE NAME: DRAINAGE SECTIONS.DWG

16/09/21 CDV ARCHERS WAY' ESTATE - STAGE 3 AT 22-80 CASH STREET, D'AGUILAR

		OCATION			T	IME	SU	B-CATCI	HMENT I	RUNOFF				INLET DE	SIGN						DRAIN I	DESIGN							HEADLOS	SSES					PAR	RT FULL	\top		DESIGN LE	VELS		
\vdash						tc		С				<u>a</u>				QЬ	tc	Ti	+CA			Qs Qp	L	S		٧	Т		V2/2g Ku		Kl h	nl Kv	hw	Sf		Vp	,+	T		T		
DESIGN ARI	STRUCTURE No.	DRAIN SECTION	SUB-CATCHMENTS CONTRIBUTING	LAND USE	E OF CATCHMENT	INC.	10yr RUNOFF	-EFFICIENT RUNOFF	B-CATCHMENT AREA	VALENT AREA	⊨	DISCHARGE FLOW IN K&C	ROAD GRADE AT INI FT	MINOR FLOW ROAD CAPACITY	INTO INLET	BYPASS FLOW	STRUCTURE No. CRITICAL TIME OF CONC	RAINFALL INTENSITY	(C × A)	M C	JOR SURFACE FLOW	MAJOR SURFACE FLOW S	ENGTH		BOX SIONS (CLASS)	OW VELOCITY	TIME OF FLOW IN REACH STRUCTURE CHART No.	STRUCTURE RATIOS FOR 'K' VALUE CALCULATIONS		JCT.	LAT. HEADLOSS CO-EFFICIENT LAT. PIPE STRUCT.		ш	NO	Sf)	этн Тосітү	LEVELS	DRAIN SECTION H.G.L	UPSTREAM H.G.L	W.S.E.	SURFACE OR K&C INVERT LEVEL	STRUCTURE No.
уrs					% г	_	n/h		-	ha l	ha l/	s l/s	_	l/s	l/s	l/s	_	_	$\overline{}$	l/s	l/s l	/s l/s			mm	$\overline{}$			m	m		m	m		$\overline{}$	m m/s	_				m	
10 100	1A/5F	1A/5F to 5/F	1A/5F	ROAD/ALLOT	11	0.00 10	54	0.88 1.00	0.127	0.111 0. 0.127 0.	.111 5: 127 8'	2 63 9 FLOW	3.33 WIDTH 1.	549 4 289 (0.000 3 mg	nth) 54	9 1.	7F 10.00 10.00	168 254	0.111 0.127	90	(F	54 Pipe flow= G	8.565 ate flow)	0.40	375(2)	0.49	0.14	Qg 0.054 Qo 0.054 Do 375 CHRT 32: Vo2/2gDo 0.03 H/Do 0.82 Kg side flow 6.71 end flow 4.91	0.012 6.71	0.082		6.71	0.082	0.09	0.008		145.878 145.844	3 146.187 4 146.179	146.269	146.269	146.965	1A/5F
10 100	5/F	5/F to 6/F	1/F;2/F;4/F;1 A/SF;5/F	ROAD/ALLOT	11	0.00 11 0.00 2!	58	0.88	0.217	0.191 0. 0.217 0.	.191 8 217 15	9 115 3 FLOW	. 4.50 V WIDTH 1.	679 1 723 (0.000 3 mo		32	/F 11.69	158 239	0.946 1.077	715	(Pipe fl	342 ow= Sum ups	11.765 tr atten f		450(2)	2.15	0.09	Qg 0.078 Qo 0.342 Do 450 Routine 2.1 CHART 48 Du/Do 0.83 Qu/Qo 0.63 K 0.88 d/Do 2.0 chrt Qg/Qo 0.23 Kg 0.30 d/Do 15 chrt Qg/Qo 0.23 Kg 0.35 d/Do 10 Interp value Kg 0.40 Ku=Kw= 1.28 Combined pipes in line case Join Pipes:	0.236 1.28	0.302	4/F and 1A Vel11.939 V Eq Dia 451 CHART 33 / S/Do 2.5 Du/Do 1.00 S/Do 1.58 c Interpolate	/5F Vel2 0.457 Angle 197 F Angle 0 Qg/Qo 0.23 or 0.22 Ku	low 0.265 3 K 0.89 1.11 Kw 1.1		0.170	0.186 5.51		7 145.877 7 144.964		146.179	146.936	5/F
10 100	6/F	6/F to 7/F	1/F;2/F;4/F;1 A/5F;5/F	МН										4			11.78 11.78	157 238	0.946 1.077	712		370 342 ow= Sum ups			450(2)	2.15	0.51	Qo 0.342 Do 450 CHART 50 Du/Do1.00 alpha 91 K'w 0.30 Vu 2.15 WSE 0.50 Ku 1.81 Kw 2.11	0.236 1.81	0.427		2.11	0.498	1.44	0.946	0.301 3.03		7 144.537 143.175		145.035	146.528	6/F
10 100	1/7F	1/7F to 7/F	8/F	ROAD/ALLOT	11	0.00 10	58 54	0.88 1.00	0.386	0.340 0.3 0.386 0.3	340 15 386 27	9 168 3 FLOW	0.00 WIDTH 2	282 13S. .514 (0.000 3 m	111 168 onth)	0	10.00 10.00	168 254	0.340 0.386	272	(F	168 Pipe flow= G		7.14	450(2)	1.06	0.14	Qg 0.168 Qo 0.168 Do 450 CHRT 32: Vo2/2gDo 0.13 H/Do 0.00 Kg side flow 7.39 end flow 5.74	0.057 7.39	0.423		7.39	0.423	0.35	0.030	0.144 3.84		143.574 143.175	143.997	143.997	144.599	1/7F
10 100	7/F	7/F to 8/F	1/F;2/F;4/F;1 A/5F;5/F;8/F; 7/F	ROAD/ALLOT	11	0.00 11 0.00 2	58	0.88	0.333	0.293 0.3 0.333 0.3	293 13 333 23	7 200 5 FLOW	0 0.00 V WIDTH 2	282 13S. .832 (0.000 3 m	111 200 onth)	0	12.29 12.29	154 234	1.579 1.796	1167	(Pipe fl	673 ow= Sum ups	15.525 tratten f		675(2)	1.83	0.14	Q 9.183 Q 0.673 D 0.675 Routine 2.1 CHART 48 Du/Do 0.67 Qu/Qo 0.50 K 0.86 d/Do 2.0 chrt Qg/Qo 0.27 Kg 0.26 d/Do 15 chrt Qg/Qo 0.27 Kg 0.33 d/Do 100 Interp value Kg 0.40 Ku=Kw= 1.62 Combined pipes in line case Join Pipes:	0.171 1.26	0.215	6/F and 1/7 Vel1 2.111 V Eq Dia \$96 CHART 33 / S/Do 2.5 Du/Do 0.88 S/Do 1.30 c Interpolate	7F Tel2 0.969 Angle 217 F Angle 0 Qg/Qo 0.2 or 0.37 Ku	Flow 0.490 7 K 0.85 1.22 Kw 1.2	22	0.092	0.259 5.26	142.960 141.966	142.960 142.475	143.175	143.175	144.599	7/F
10 100	8/F	8/F to 9/F	1/F;2/F;4/F;1 A/5F;5/F;8/F; 7/F;RW60/I;R W59/I;RW58/I ;RW57/I;RW5 6/I;1/H;2/H;1 A/3H;3/H;1A/ 4H;4/H	мн										4			12.43 12.43	154 233	2.945 3.338	2160	1250 (Pipe fl	971 1189 ow= Sum ups	59.111 tr atten f	0.63 lows)	825(2)	2.16	0.46	Qo 1.189 Do 825 Flow 4/H made eqv grate flow (HART 33 Angle 6 S/Do 2.5	0.238 1.55	0.368	Du/Do 0.82 S/Do 1.61 co K vals abov	Qg/Qo 0.4 or 0.42 Ku	3 K 1.13 1.55 Kw 1.5				141.966 141.592	142.107 141.733	142.475	142.475	144.698	8/F
10 100	9/F	9/F to 10/F	1/F;2/F;4/F;1 A/5F;5/F;8/F; 7/F;RW60/I;R W59/I;RW58/I ;RW57/I;RW5 6/I;1/H;2/H;1 A/3H;3/H;1A/ 4H;4/H	МН										4			12.89 12.89	151 230	2.945 3.338	2133		944 1189 ow= Sum ups			1200 600 (RCBC		0.09	Qo 1.189 Do 801 Flow 8/F made eqy grate flow CHRT 32: Ve2/2gbo 0.23 H/Do 0.31 Kg side flow 4.97 end flow 4.15 K vals above for stepped pipes as grate flo grate flow decreased by 1.189 from 8/F	0.139 1.55	0.215	CHART 50 E K'w 0.28 Vu Ku 1.55 Kw K vals step	Du/Do1.03 a u 2.22 WSE 2.05	lpha 64 0.28	0.39 Ku 1.55 Kw				141.518 141.484		141.803	142.438	9/F
10 100	1/10F	1/10F to 2/10F	1A/10F	ROAD/ALLOT	11	0.00 10	58	0.88 1.00	0.372	0.328 0.3 0.372 0.3	328 15 372 26	3 214 3 FLOW	0.00 WIDTH 2	331 17S. .541 (0.000 3 m	111 214 onth)	0	10.00 10.00	168 254	0.328 0.372	262	(F	214 Pipe flow= G	8.565 ate flow)	1.75	600(2)	0.73	0.14	Qg 0.214 Qo 0.214 Do 600 CHRT 32: Vo2/2gDo 0.04 H/Do 0.06 Kq side flow 9.28 end flow 6.70	0.027 9.28	0.252		9.28	0.252	0.11	0.010		141.495 141.345	141.532 141.522	141.784	141.784	142.470	1/10F
10 100	2/10F	2/10F to 10/F	1A/10F;10/F	ROAD/VERGE	9	i.00 2 i.00 3	16 29	0.88 1.00	0.082	0.072 0.0 0.082 0.0	072 4 082 7	3 43 5 FLOW	0.01 V WIDTH 0	272 16S. .000 (0.000 3 m	111 43 onth)	0	10.14 10.14	167 253		319	(Pipe fl	246 ow= Sum ups	6.232 tratten f		600(2)	0.84	0.10	Qg 0.033 Qo 0.246 Do 600 CHART 33 Angle 0 S/Do 2.5 Du/Do 1.00 Qg/Qo 0.14 K 0.62 S/Do 1.32 cor 0.18 Ku 0.80 Kw 0.80	0.036 0.80	0.029		0.80	0.029	0.15	0.009			5 141.493 141.484		141.522	142.461	2/10F
10 100	10/F	10/F to 7/E	1/F;2/F;4/F;1 A/5F;5/F;8/F; 7/F;RW60/I;R W59/I;RW58/I ;RW57/I;RW5 6/I;1/H;2/H;1 A/3H;3/H;1A/10 F;10/F	МН										4:			12.98 12.98	151 229	3.345 3.792	2412	453 9 (Pipe f	977 1435 flow= \$um up	18.076 stream flo	0.50 pws) x I	1200 600 (RCBC		0.15	Qo 1.435 Do 801 Routine 2.15 Join Pipes: 9/F and 2/10F Vel1 2.362 Vel2 0.870	0.202 0.88	0.177	Eq Dia 931, CHART 50 E K'w 0.21 Vu Ku 0.88 Kw	Angle 200 F Du/Do1.16 a i 2.11 WSE 0	low 1.435 Ipha 20	0.57	0.104			141.307 141.203		141.532	142.482	10/F

BRISBANE - SUNSHINE COAST - CENTRAL QLD PLANNERS BRISBANE JFP House - 76 Ernest Street, South Brisbane Qld 4101 P 07 3012 0100 W www.jfp.com.au

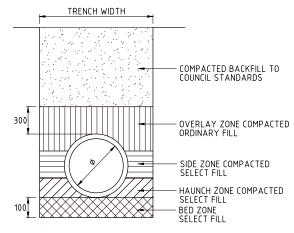
URBAN DESIGNERS SURVEYORS ENGINEERS LANDSCAPE ARCHITECTS NOT TO SCALE THIS SCALE SHOWN IS ORIGINAL DRAWING SCALE

DRAINAGE CALCULATIONS TABLES -SHEET 2 OF 2

DFC (PROJECT MANAGEMENT PTY LTD)

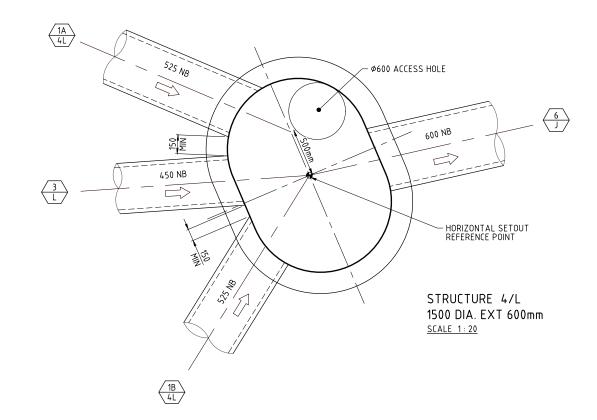
16/09/21 CDV ARCHERS WAY' ESTATE - STAGE 3 AT 22-80 CASH STREET, D'AGUILAR

M2584E_3


DENNIS
FAMILY
CORPORATION
HILE NAME: DRAINAGE SECTIONS.DWG

CONSTRUCTION	PIPE			MINIMU	IM COMPAC	TION COVER	TO PIPE 0	BVERT		
EQUIPMENT	CLASS	Ø375	Ø450	Ø525	Ø600	Ø675	φ750	Ø825	Ø900	Ø1050
VIBRATORY RAMMER	2	0.450	0.400	0.400	0.350	0.350	0.300	0.300	0.250	0.25
(UP TO 75kg)	3	0.300	0.300	0.300	0.250	0.250	0.200	0.200	0.200	0.200
VIBRATORY TRENCH	2	0.400	0.400	0.350	0.250	0.250	0.200	0.200	0.200	0.200
ROLLER (UP TO 2t)	3	0.250	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
VIBRATORY SMOOTH	2	0.700	0.700	0.650	0.650	0.650	0.600	0.600	0.400	0.400
DRUM ROLLER (7t)	3	0.450	0.450	0.450	0.350	0.350	0.200	0.200	0.200	0.200
VIBRATORY SMOOTH	2	0.850	0.850	0.800	0.800	0.800	0.750	0.750	0.750	0.750
DRUM ROLLER (10†)	3	0.550	0.550	0.500	0.500	0.500	0.200	0.200	0.200	0.200
EXCAVATOR AND	2	0.700	0.650	0.650	0.650	0.650	0.600	0.600	0.550	0.550
COMPACTION WHEEL (15+)	3	0.450	0.450	0.450	0.450	0.450	0.350	0.350	0.250	0.250
EXCAVATOR AND	2	1.050	1.000	0.950	0.900	0.900	0.850	0.850	0.750	0.750
COMPACTION WHEEL (25t)	3	0.650	0.650	0.650	0.650	0.650	0.600	0.600	0.500	0.500
GRADER [CAT120H]	2	0.600	0.600	0.450	0.200	0.200	0.200	0.200	0.200	0.200
14.5†)	3	0.600	0.450	0.450	0.200	0.200	0.200	0.200	0.200	0.200
GRADER [CAT140H]	2	0.600	0.600	0.600	0.200	0.200	0.200	0.200	0.200	0.200
(17.0†)	3	0.600	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
SCRAPER [CAT613C11]	2	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.200	0.200
(27.2†)	3	0.600	0.600	0.600	0.600	0.600	0.200	0.200	0.200	0.200
SCRAPER [CAT621F]	2	0.700	0.650	0.650	0.650	0.600	0.600	0.600	0.600	0.600
(53.8†)	3	0.650	0.600	0.600	0.650	0.600	0.600	0.600	0.600	0.600
DOZER [CATD7 G]	2	0.600	0.600	0.600	0.200	0.200	0.200	0.200	0.200	0.200
DOZER [CATD/ d]	3	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
DOZER [CATD9 R]	2	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.200
DUZER [CATD9 K]	3	0.600	0.600	0.600	0.600	0.600	0.200	0.200	0.200	0.200
EXCAVATOR [CAT315B]	2	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
(15.8†)	3	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
EXCAVATOR [CAT317]	2	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
(17.3t)	3	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
EXCAVATOR [CAT325B]	2	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
(25.9†)	3	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200

TYPE HS2 SUPPORT:


- 1. THE HAUNCH ZONE GOES FROM THE BASE OF THE PIPE TO A HEIGHT OF 0.3m TIMES THE DIAMETER OF THE PIPE (ie TO 3/10 OF THE DIAMETER OF THE PIPE).
- 2. THE HAUNCH ZONE IS COMPACTED TO A MINIMUM DRY DENSITY RATIO OF 90%. (DI=60) 3. THE SIDE ZONE GOES FROM THE TOP OF THE HAUNCH
- ZONE TO A HEIGHT OF 0.7 TIMES THE DIAMETER OF THE PIPE (ie TO 7/10 OF THE DIAMETER OF THE PIPE) 4. THE SIDE ZONE IS COMPACTED TO A MINIMUM DRY
- DENSITY RATIO OF 90%. (DI=60)
- 5. THERE IS A 300mm OVERLAY ZONE OF COMPACTED ORDINARY FILL.

- 1. SOIL TYPE USED FOR THIS TABLE IS CLAYEY SAND. ALL OTHER SOIL TYPES MUST BE REFERRED IMMEDIATELY TO THE SUPERVISING ENGINEER SO MINIMUM COVERS CAN BE CALCULATED.
- 2. INSTALLATION TYPE FOR THIS TABLE IS HS2. (REFER DETAIL)
- 3. ANY CONSTRUCTION EQUIPMENT, INSTALLATION TYPE, PIPE CLASS OR PIPE DIAMETER NOT COVERED IN THIS TABLE SHOULD BE REFERRED ONTO THE SUPERVISING ENGINEER BEFORE ANY CONSTRUCTION COMMENCES
- DISTANCES SHOWN ARE THE ABSOLUTE MINIMUM COMPACTION COVER TO THE OBVERT OF THE STORMWATER PIPE FOR THE NOMINATED MACHINERY. THE CONTRACTOR IS TO ENSURE THAT MACHINES THAT REQUIRE HIGHER COMPACTION COVER ARE KEPT CLEAR OF STORMWATER PIPES AND TRENCHES UNTIL THEIR NECESSARY COMPACTION COVER IS ACHIEVED.
- CONSTRUCTION EQUIPMENT LISTED IN THIS TABLE ARE EXAMPLES ONLY AND EQUIVALENT MACHINERY MAY BE USED.

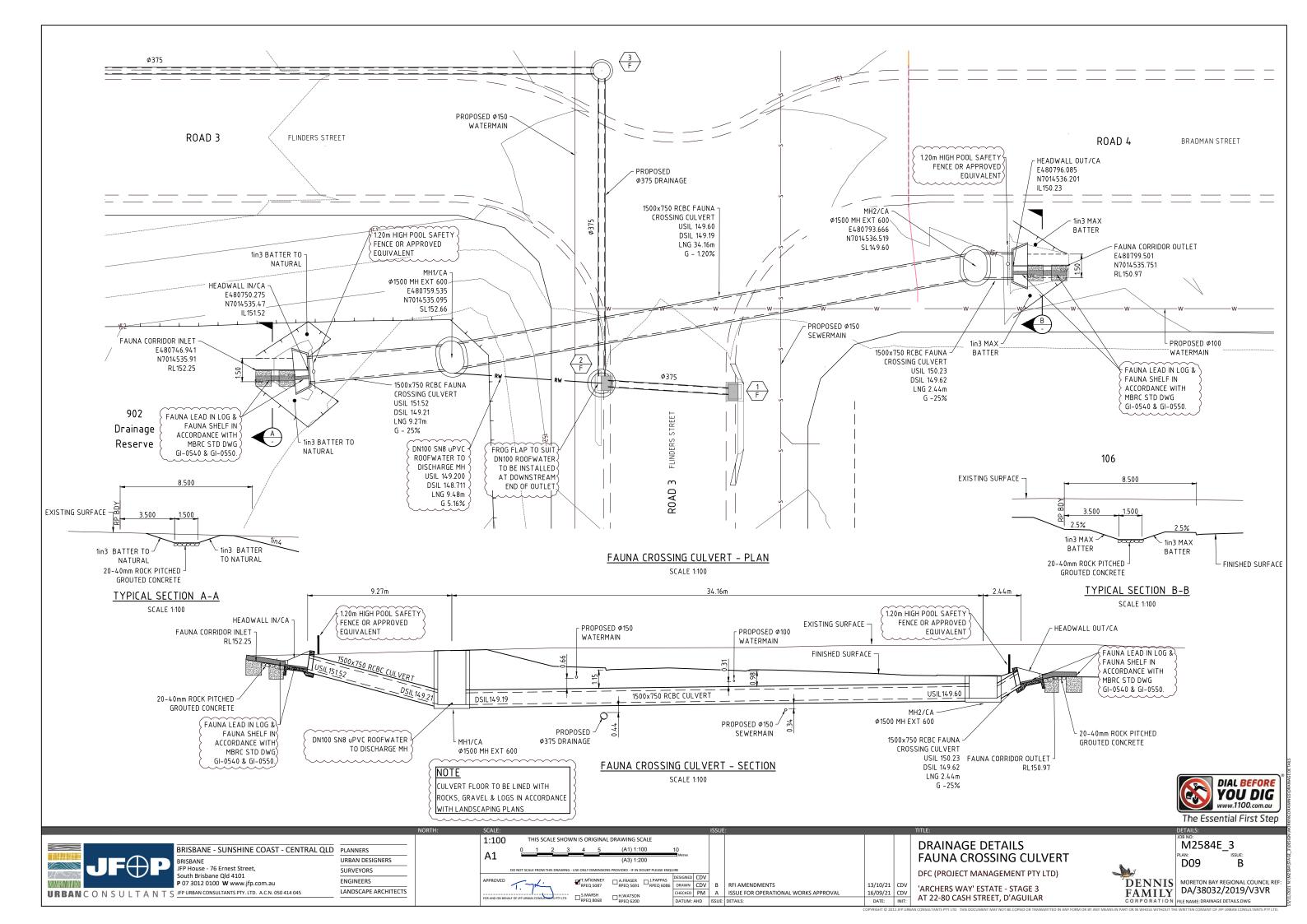
INSTALLATION TYPE HS2

NOTE: CRACKED PIPES WILL NOT BE ACCEPTED AT 'ON MAINTENANCE' AND IT IS TO BE DEMONSTRATED IN ACCORDANCE WITH COUNCIL STANDARDS THAT THE STORMWATER SYSTEM IS ACCEPTABLE TO COUNCIL WITH REGARD TO CRACKED PIPES. (THE CONTRACTOR IS TO REFER TO SECTION 6.5.1 OF THE SUBDIVISION AND DEVELOPMENT GUIDELINES FOR FURTHER INFORMATION.)

BRISBANE - SUNSHINE COAST - CENTRAL QLD PLANNERS BRISBANE

P House - 76 Ernest Street, SURVEYORS South Brisbane Old 4101 ENGINEERS **P** 07 3012 0100 **W** www.jfp.com.au

URBAN DESIGNERS LANDSCAPE ARCHITECTS



DRAINAGE STRUCTURE DETAILS

DFC (PROJECT MANAGEMENT PTY LTD)

M2584E_3 D08 Α

MORETON BAY REGIONAL COUNCIL REF. FAMILY DA/38032/2019/V3VR CORPORATION FILE NAME: DRAINAGE DETAILS, DWG

